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The hypothesis

Computing science can inspire the way we model and reason about
biological systems, particularly ones involving communication

Not biologically inspired computing, but
computationally inspired biology/biochemistry

Modelling for intervention (e.g. drug targets)

what does my mode/ do if..
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try this experiment..




The talk

gentle/naive biochemistry - signalling pathways

new models of dynamic behaviour of signalling pathways based on
CTMCs (continuous time Markov chains%

- stochastic process algebra (PEPA)
- model checking continuous stochastic logic (PRISM)

new quantitative analysis
relation to traditional ODE models

Lots of Acronyms
- RKIP/ERK
- PEPA
- ODE
- PRISM
- DIZzY



Cell signalling for dummies

- movement of signal from outside cell fo nucleus
» fundamental to cell processes (growth, division, differentiation, apoptosis)

- signalling is via membrane receptors, “signal” is phosphorylation - accumulation of
certain phosphorylated proteins

signalling molecule




A little more complex.. pathways/networks

Receptor
R 6 N6 N 6 Mg

cell membrane

G-protein

OCAMP

Rap1 )\GEE

Teamp )ATP
B-Raf AMP @

/

“y

Abbreviations and notes

*7-TMR: seven trans-membrane receptor

esmall G-proteins: Rap1, Ras, Rac; active when GTP bound
*cAMP-GEF: cAMPactivated GTP-Exchange-Factor
*AdCyc: Adenylate cyclase

*PDE: Phhosphodiesterase

*PKA: cAMP activated protein kinase

eadaptor proteins: shc, grb2

*SOS: Son-of-Sevenless, a GEF for Ras

*PI-3 K: Phosphatidylinositol-3 kinase

*Akt: a kinase activated by PI-3 K via PI-3 and another kinase, PDK
activation & inhibition @ phosphorylation *PAK: a kinased activated by binding to Rac

*MKP: MAPK phosphatase, dephosphorylates MAPKs

transcription
factors

nucleus
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Basic ERK Pathway

Raf-1*

MEK

ERK

l

activated ERK enters nucleus

Raf-1*

k12/k13

k14

k8




MEK

k15

RKIP 1nhibited ERK Pathway

Raf-1* RKIP

k14

k6/k7

MEK-PP

k1/k2

@ Raf-1*/RKIP

k5

@)

ERK RKIP-P

k11

O

@ RKIPiP/RP
Raf-1*/RKIP/ERK-RP

k9/k10

CANCER RESEARCH UK
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From paper by Cho, Shim, Kim, Wolkenhauer, McFerran, Kolch, 2003.



MEK

k15

RKIP 1nhibited ERK Pathway

12/k13

k14

Raf-1*

ERK-P

D

k8

K-PP/RK-P

MEK-PP

k6/k7

k1/k2

@ Raf-1*/RKIP

RKIP

2,

k11

RKIP-P/RP

Raf-1*/RKIP/ERK-RP

k5

)

ERK

(e}

RKIP-P

k9/k10
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RP

O proteins/complexes

forward /backward

reactions
(associations/disassociations)

products

(disassociations)

m1, m2 .. concentrations of

proteins

k1,k2 ... rate (performance)

coefficients



MEK

k15

RKIP 1nhibited ERK Pathway

Raf-1*

12/k13

k14

k6/k7

MEK-PP

RKIP

k1/k2

@3

k11

Raf-1*/RKIP

k3/k4 @

K-PP/RK-P @

RKIP-PYRP

af-1*/RKIP/ERK-RP

k5

k9/k10

)

ERK

(e}

RKIP-P

RP

producer/consumer
behaviour

computation
stochastic
concurrent
message passing
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Modelling concentrations not
molecules

o O

1 [ J _
O o EM
Level 3< = 5
—
= 4 :
Abstract Level 2< = Continuous Values
Discrete i_ 3
Values =
Level 1< z_ 2
—
=1
Level 0x =
| = 0

levels O0..N represent [0,1*M/N), [1*M/N,2*M/N), ..., [N-1*M/N ,N*M/N]

nb. time is real, concentration is discrete.
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PEPA

Process algebra with performance, invented by Jane Hillston

Prefix (ar)
Choice Pl + P2 competition between components (race)
Cooperation/ P1 [I] P1 ak | independent concurrent (interleaved) actions
Synchronisation a ¢ | shared action, at rate of slowest mu/timay
Constant A=P assigh names to components

P:=S | P|l|P

S:=(a).S | S+tS | A

Synchronisation is associative, commutative.
T /s the passive rate.

12



Process algebra semantics

Standard process algebra descriptions denote a form of labelled transition
systems or Kripke structures.

&=0,y=0>
O CxE0Y=D ETY=T>

Performance evaluation process algebra descriptions denote Continuous
Time Markov chains (probabilistic transition systems).

a,6 a,6 a,0 1 3/4 3/4
O OO O— O O O
b,2 b,2 b,2 1/4 1/4 1

CTMC DTMC

13



Continuous Time Markov Chains

1.0

l o
A

Pt)=1-¢" el
A=1.0

State based models for dynamic, stochastic behaviour.

* performance coefficients associated with all fransitions
+ from rates we derive probabilities

* "memoryless” property.



Modelling the ERK Pathway in
PEPA

Each reactionis modelled by an event, which has a performance
coefficient.

Each proteinis modelled by a process which synchronises others
involved in a reaction. A fine-grained distributed view.

(reagent-centric view)

Each sub-pathway is modelled by a process which synchronises with
other sub-pathways. A coarser grained view.

(pathway-centric view)

Take the simplest concentration abstraction, N=1, the “high/low" approach.

15



Modelling reactions

Reaction Producer(s) Consumer(s)
klreact {P2 P1} {P1/P2}
kZreact {P1/P2} {P2 P1}

klreact and k2react will be a 3-way synchronisations.

(Multiway synch is essentiall)

16



Modelling reactions

Reagent view: models whether or not a reagent can
participate in a reaction (observable/unobservable).

Each reagent gives rise to a pair of definitions.
Model equations
P1, = (klreact kl1). P1

@ @ P1, = (k2react,T). P1,

P2,,= (klreact k1). P2,
P2, = (k2react,T). P2,

P1/P2,, = (k2react k2). P1/P2,
P1/P2, = (klreact,T). P1/P2,,

(consumers have passive rate)

17



Modelling reactions

Reagent view: models whether or not a reagent can
participate in a reaction (observable/unobservable).

Each reagent gives rise to a pair of definitions.
Model equations

P1, = (klreact kl1). P1

@ @ Pll;: (k2react,T). P1,

P2, = (klreact k1). P2,
P2, = (k2react,T). P2,

P1/P2,, = (k2react k2). P1/P2,
P1/P2, = (klreact,T). P1/P2,

Model configuration

P1,, |[klreact k2react| P1, |klreact k2react| P1/P2,

(assuming initial concentrations of m1 and m2)
18



Modelling reactions

N levels:

Model equations

P2 P1 P1,, = (klreact N*k1). P1
@ @ Pl = (klreact (N-1)*k1). P1 , + (k2react,T).P1,,

P1,= (klreact k1). P1,+ (k2react,T).P1,
P1, = (k2react,T). P1,

19



MEK Raf-1* RKIP

k15

MEK-PP ERK RKIP-P RP

Reagent view:
Raf-1*, = (klreact kl). Raf-1* + (k12react kl12). Raf-1*,
Raf-1* = (kbproduct,T). Raf-1*, +(k2react,T). Raf-1*, + (k13react,T). Raf-1*, + (k14product,T). Raf-1*,

(26 equations)

20



Signalling Dynamics

RC(f—l*H | k1reac‘r,k12r'eac’r,k13r‘eacT,k5pr‘oducT,k14pr'oducT|
RKIPH | kireact,k2react kllproduct |
Rle-l*H/RKIPL | k3r'eac‘r,k4r'eac1‘|
Raf-1*/RKIP/ER K-PPL |k3r‘eacT,k4r‘eacT,k5producT|
ER K—PL | k5product kéreact k7react |
RKIP-PL | k9r‘eacf,k10r'eac‘r|
RKIP-P/RPL | k9react klOreact kllproduct |
RP, |
ME KL | ki12react kl3react,kl5product |
ME K/RC(f—l*L | k14product |
MEK-PP H | k8product kéreact k7react |
MEK-PP/ER KL | k8pr‘oduc‘r|
ME K-PPH | k8product |
ERK-PP,,

21



Modelling reactions

P1

@ P1/P2

Pathway view: model chains of behaviour flow

Model equations

Pathway, = (klreact kl). (k2react k2).Pathway,

Model configuration

Pathway,

(assuming initial concentrations of m1 and m2)

Note: only one component!

22



P2

k4

P1/P2
®

P5

P5/P6

K6/k7

P6

Pathway view: model chains of behaviour flow.

Two pathways, corresponding to initial concentrations:

Path10 = (klreact kl). Pathll

Pathl1l = (k2react).Path10 + (k3product k3).Path12
Path12 = (k4product k4).Path10 + (kéreact,ké).Path13
Path13 = (k7react k7).Path12

Path2 = (kébreact ké). (k7react,ké).Path2

Pathway view: model configuration

Path10 | kéreact,k7react | Path2

23



MEK Raf-1* RKIP

& ) )

k1/k2

ERK-P K11

12/k13

k15

@ @ Raf-1*/RKIP

:
RKIP-P/RP
K-PP/RK-P @
Raf-1*/RKIP/ERK-RP

k5 k9/k10

k14

k6/k7

o) @) ) @

MEK-PP ERK RKIP-P RP

Pathway view:
Pathway10 = (k9react k9). ((kl11product, kll). Pathwayl1O + (k10react k10). Pathway10)

(5 pathways)



Pathway view: model configuration

PathwaylO |ki12react ki13react kl4product| Pathway40
|k3react kdreact kbproduct kéreact k7react k8product| Pathway30
| klreact k2react k3 r‘eacT,k4r‘eac‘r,k5pr‘oducT| Pa‘rhwayZO
|k9react k1Oreact kllproduct| Pathway50

simpler!

25



What is the difference?

reagent-centric view is a fine grained view
pathway-centric view is a coarse grained view

- reagent-centric is easier to derive from data

- pathway-centric allows one to build up networks from already
known components

The two models are equivalent!

The equivalence proof, based on bisimulation between steady
state solutions, unites two views of the same biochemical
pathway.

26



Steady State Solution

1 0.04135079004156481

OO NOOILDhWN

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

0.020806115102310632
0.07346775929692899
0.006935371700770152
0.06516104016641672
0.03737546622097119
0.011336715749471194
0.036048205933593286
0.004639841577167708
0.005691394350960237
0.04138456618620803
0.0025828089820320505
0.004807783620797024
0.04817123798507296
0.018640671069835055
0.016743539619515142
0.02162874351056745
0.0028912552492803816
0.004970238100423158
0.02076780718322302
0.1840054851485999
0.008846052672337585
0.01413218356459678
0.0030482221649047224
0.0020844704151460223
0.20477329233182312
0.09642576891046874
0.0012831731450123965

Reagent view

1 0.04135079004156353

OVCOoONOOIPDWN

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

P

0.020806115102310604
0.07346775929692419
0.006935371700769834
0.06516104016641262
0.03737546622096783
0.011336715749470889
0.03604820593359156
0.005691394350959787
0.004639841577167543
0.04138456618620752
0.04817123798507505
0.0025828089820318246
0.01864067106983504
0.004807783620796737
0.01674353961951507
0.020767807183224345
0.021628743510568222
0.18400548514860549
0.002891255249280038
0.008846052672337464
0.004970238100423424
0.014132183564597499
0.20477329233182964
0.09642576891047139
0.0030482221649046053
0.0020844704151453983
0.0012831731450119671

athway view

27



State space of reagent and pathway model

state reagent-view
sl Raf-1*,,, RKIP Raf-1*/RKIP Raf-1*/RKIP/ERK-PP , ERK ,RKIP-P , RKIP-P/RP,
RP,,, MEK ,MEK/Raf-1* ,MEK-PP, MEK-PP/ERK ERK-PP,

pathway view
Pathway50 Pathway40,Pathway20,Pathway10

s2

s28

(28 states)

28



State space of reagent and pathway model

k8product k8product
i e r
k1Oreact

D
9reaq ‘i

(=), Liveer

k8product k8product

k14prod

29



What do you do with these two models?

-investigate properties of the underlying Markov model.

Transient analysis

e.g. analysis to determine whether a state will be reached.

Steady state analysis
e.g. analysis of the steady state solution - behaviour in the long run.

III

Note: there isn't one steady state, but a very large "cycle

30



Static Analysis

Check for deadlocks, livelocks

- something "wrong” with model
- e.g. an incompleteness (discovered problem with RKIP model)

31



Quantitative Analysis

Generate steady-state probability distribution (using linear algebra).

1. Use state finder (in reagent model) to aggregate probabilities and
look for proteins high or low.

Example

increase k1 from 1 to 100 and the probability of being in a state with ERK-
PP, drops from .257 to .005

2. Perform throughput analysis (in pathway model).

32



Quantitative Analysis

0.04-

0.035 |

Throughput of k8product 0.031
0.025 |

0.02

2 4 6 8 10
k1

Effect of binding of RKIP to Raf-1* on ERK-PP

(increasing the rate of k1 on k8product throughput (rate x probability))

We can see the effect of RKIP, but is this only indicative?
How accurate is the model?

33



Ordinary differential equations

Mass action kinetics (semantics):

| dcrlt[ll =—kmm, +Kk,m,

dm

Ki/k2 «—= =—kmm, +k,m,
ddt
m

d—ts — klmlmz — kzms

note, nonlinear ODEs (second order reactions) 34



Mass action kinetics (semantics):

more accurate rates

k1/k2

Consider forward only:

dm,
dt

— klmlmz

But the PEPA model has rate kl.
A consequence of synchronisation (slowest).

More accurate rates, and model checking
capabilities will be obtained by moving to a
state-based PRISM model.

35



PRISM reagant model

PRISM - probabilistic model checker
developed by Marta Kwiatkowska et al

Temporal reasoning (experiments, open formulae) for

- DTMCs
- MDPs
- CTMCs

* Prism modelling language - processes and synchronising
transitions. Rates are mu/tiplied.



constint N=7;
const double R = 2.5/N /* 2.5 is initial concentration */

module RAF1
RAF1: [0..N] init N;
[r1] (RAF1 > 0) -> RAF1*R: (RAF1' = RAF1 - 1);
[r2] (RAF1 < N) -> 1: (RAF1' = RAF1 + 1);
[r5] (RAF1 < N) -> 1: (RAF1' = RAF1 + 1);
endmodule

module RKIP
RKIP: [0..N]init N;
[r1] (RKIP > 0) -> RKIP*R: (RKIP' = RKIP - 1);
[r2] (RKIP < N) -> 1: (RKIP' = RKIP + 1);
[r11] (RKIP < N) -> 1: (RKIP' = RKIP + 1);
endmodule

module Constants
x: bool init true;
[r1] (x) -> 0.53/R: (x' = true);
[r2] (x) -> 0.0072/R: (x' = true):
[r3] (x) -> 0.625/R: (x' = true);
[r4] (x) -> 0.00245/R: (x' = true);

system RAF1 || RKIP || RAF1/RKIP .. || Constants

endsystem

37




constint N=7;
const double R = 2.5/N /* 2.5 is initial concentration */

module RAF1
RAF1: [0..N] ini
[r1] (RAF1 > 0) -$ RAF1' = RAF1 - 1);
[r2] (RAF1 < N) -> 1: (RAFL' = RAF1 + 1);
[r5] (RAF1 < N) -> 1: (RAF1' =RAF1 + 1);
endmodule

module RKIP

RKIP: [0..N] init+N: «_ —————— rafes
[r1] (RKIP > ORKIP' = RKIP - 1);
[r2] (RKIP < N) -> 1: (RKIP' = RKIP + 1);

[r11] (RKIP < N) -> 1: (RKIP' = RKIP + 1),
endmodule

[r2] (x) -> 0.0072/R: (x' = Tr{Je);
[r3] (x) -> 0.625/R: (x' = true);
[r4] (x) -> 0.00245/R: (x' = true);

system RAF1 || RKIP || RAF1/RKIP .. || Constants endsystem

Example rate of rl: (N*R)* (N*R) * 1> 0.53/R = 7*0.53*2.5
RAFI * RKIP * RAPI/RKIP * Constants

38



Temporal properties

stability of protein (steady state)
monotonic decrease of protein (transient)
protein stability with varying rates (steady state)

protein activation order (transient)

39



CSL (Continuous Stochastic Logic)

Operator CSL Syntax
True true

False false
Conjunction b NP
Disjunction OV P
Negation ¢
Implication » = ¢

Next P D<Ip Xd)]
Unbounded Until | Pyqp[oUd]
Bounded Until Prap [pUS1 @]
Bounded Until Proap[pUZt §]
Bounded Until Prap[pUlt1:t2] 9]
Steady-State Spap | P]

P_.,[(true )U _,., (protein = N)]

S_,[( protein >10)]
P, [(proteinl< C)U (proteinl> C)]

40



Temporal properties

stability of protein (steady state)
S=, [(RAF1>+ C-1) © (RAF1«= C+1)]

monotonic decrease of protein (transient)
P=,.; [(frue) U ((Protein = C) ~ P=,_5 45 [X(Protein = C-1)])]
P=, [(true) U=120 (Protein > CRAF1=C}]

stability with varying rates (steady state)
S=, [(RAF1>=2) © (RAF1<=3)]
S=, [(RAF1>=0) © (RAF1<=1)] (vary k1)

protein activation order (transient)
P=, [(RAF1/RKIP/ERK-PP < M) U (RAF1/RKIP = C)]

41



0.95

0.9

0.85

0.8

4. protein activation order

I — [

M=5 +

M =4

M=3 ——

M=2

| |

1 2
C

Probability that
RAF1/RKIP/ERK-PP reaches 5 before
RAF1/RKIP reaches 2 > 99%

Property 4:
protein activation order (fransient)
P=?

[(RAF1/RKIP/ERK-PP < M) U (RAF1/RKIP = C)]

42



3. Stability when varying rate

l
0.9
0.8

0.7 |

0.6
A 0.5
0.4
0.3
0.2
0.1

0

When the binding rate of RKIP and RAF1 (k1) is increased, the probability that RAF1
stabilises on levels 2 or 3 (red square) falls, and the probability that RAF1 stabilises on

//

-

- /////%f

0.2 0.4 0.6 0.8 | N=5
k1l

levels O or 1 (blue square) rises.

Much more - allows us to conclude RKIP dampens down the ERK pathway.

43




Sounhdness

why is rate for rl sound? (RAF1*R)*(RKIP*R) *(k1*N)

relate discrete and continuous variables: m = m*R=m/N

Recall dcrlrtlg =k,mm,

m5'= m; +(k1* m; * m, * At). But abstract levels increase by 1, so

AT = 1/(k1* m1 * mz* N)
Let A = k* ml*mZ*N
= k* (m;*R) (m,*R) *N
- kI* (RAFT*R)*(RKIP*R) *N

(We have, in effect, encoded Euler's method of numerical integrati¢n!)



Simulation

With simple formulae (rewards) it is possible to reproduce a
simulation trace of the system. Compare with ODE model:

25 v
oa |
23 |
20 |

2.1 F

ODE Solution

B Levels
Levels €q € Ce, C-'ei
4 0.126 mM 0.280 21.557 mM 2.58
5 0.103 mM 0.217 17.569 mM 1.727
6 0.086 mM 0.176 14.582 mM 1.191
8 0.061 mM 0.122 10.402 mM 0.605
12 0.036 mM 0.071 6.042 mM 0.204

EIEI 4:'.} EIEI Bh 100

time

7-9 levels are sufficient! Extremely tractable!

45



abstraction

A /

stochastic

Big Picture

graphical
representation

intensional
behaviour

process algebra throughput
pathwai/ reagent mass action
view view differential
equations
denoteé
Benefits
Interactions
Relative change
Y Abstraction

continuous time
Markov chains

Behaviour patterns
Applicability to other dynamics




abstraction

Bigger Picture

graphical

P

representation

A /

stochastic

process algebra

pathwai/
view

denoteé

logic +———

e

reagent
view

multilevel
reagent view

continuous time
Markov chains

throughput

Euler's method

intensional
behaviour

» experimental
data

mass action
differential
equations

» Matlab

Benefits

Interactions

Relative change

Abstraction

Behaviour patterns
Applicability to other dynamids




Modelling

Each process molecular species is modelled by a stochastic, concurrent process
Expressed using high level languages from computer sciencel

new kinds of analysis
new ways of relating traditional and non-standard models

Process algebra models (reagent and pathway)

S=0.1

N 0.4
Throughput of k8product 0.03 \ -
3

[l
H?\_
E
E

"

°
°
I
&
d
I
———1_T1T T _1—=F [ 1

0.4 0.6 0.8

=
fay

S=?[(Raf-1*>2) N\ Raf-1*<3] 48



The really
big picture

topology & parameters + stochiometry + traffic + data

% {00011100} .7
00110000
%) 00010000 <0

stochastic
process algebra

Raf-1*, = (k1react,k1). Raf-1* + ...

stochastic simulation

abstraction

pathway

_ reagent
view

view

Continuous time

throughput

Markov chains |\ levels
: approxin;
continuous P
stochastic PRISM
logic -
probabilities

continuous time
discrete concentrations

mass action

differential
e equations
—>

\ 4

Dizzy

approximation

SO

jve

v

dml = - k1"m1*m2 + k2*m3
dt

(other dynamics)

continuous time
continuous concentrations

3

Approximation
,..‘-u,,z_model-fitting
(Bayesian inference)

simulation

discrete time
continuous (:oncentrations49



Discussion & Conclusions

Regent-centric view
- probabilities of states (H/L)
- differential equations
- fit with data
- PEPA -> PRISM

Pathway-centric view
- simpler model
- building blocks, modularity approach
- no further information is gained from having multiple levels

Life science

- see potential of an /nteraction approach which affords two views;
static analysis and modelling language

Computing science
- individual/population view
- continuous, traditional mathematics and simulation

theorem: as n->~, ODE and CTMC semantics converge (1st, 2nd order egns)

50



Further Challenges

Quantification of abstraction over networks
- "“chop" of f bits of network
Model spatial dynamics (vesicles) and scaffolds
Model other stochiometries
Relate individual to molar concentration models phtochondria

chain

Prove CTMC and ODE equivalence eNOS NADPH| Ll e
Relate data to high level operators (topology) 7/ \%

‘ \‘\é/ lSOD Fenton
Further applications: e.g. oxidative stress | "ondo 2 %—V\? R+ 0,
CPX a0 + GssG

2
5 . . Fe2+
cardiovascular medicine Hlo |

* |
|

| RO} ‘ g o

|

RO*
| 51

~ROS



The End

Thank you.
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